Highest vectors of representations (total 12) ; the vectors are over the primal subalgebra. | \(g_{-3}\) | \(-h_{6}-2h_{5}-3h_{4}+2h_{2}+h_{1}\) | \(h_{3}\) | \(g_{3}\) | \(g_{13}+2/3g_{6}+g_{5}+2/3g_{1}\) | \(g_{15}\) | \(g_{18}\) | \(g_{17}+2/3g_{16}+2/3g_{11}\) | \(g_{7}\) | \(g_{12}\) | \(g_{20}+g_{19}\) | \(g_{21}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(6\omega_{1}\) | \(8\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi_{1}-2\psi_{2}\) | \(0\) | \(0\) | \(4\psi_{1}+2\psi_{2}\) | \(2\omega_{1}\) | \(4\omega_{1}-2\psi_{1}-8\psi_{2}\) | \(4\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+8\psi_{2}\) | \(6\omega_{1}\) | \(8\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi_{1}-2\psi_{2}} \) → (0, -4, -2) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{4\psi_{1}+2\psi_{2}} \) → (0, 4, 2) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}-8\psi_{2}} \) → (4, -2, -8) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}-6\psi_{2}} \) → (4, 2, -6) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}-2\psi_{1}+6\psi_{2}} \) → (4, -2, 6) | \(\displaystyle V_{4\omega_{1}+2\psi_{1}+8\psi_{2}} \) → (4, 2, 8) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | \(\displaystyle V_{8\omega_{1}} \) → (8, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi_{1}-2\psi_{2}\) | \(0\) | \(4\psi_{1}+2\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(4\omega_{1}-2\psi_{1}-8\psi_{2}\) \(2\omega_{1}-2\psi_{1}-8\psi_{2}\) \(-2\psi_{1}-8\psi_{2}\) \(-2\omega_{1}-2\psi_{1}-8\psi_{2}\) \(-4\omega_{1}-2\psi_{1}-8\psi_{2}\) | \(4\omega_{1}+2\psi_{1}-6\psi_{2}\) \(2\omega_{1}+2\psi_{1}-6\psi_{2}\) \(2\psi_{1}-6\psi_{2}\) \(-2\omega_{1}+2\psi_{1}-6\psi_{2}\) \(-4\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}-2\psi_{1}+6\psi_{2}\) \(2\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-2\psi_{1}+6\psi_{2}\) \(-2\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-4\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(4\omega_{1}+2\psi_{1}+8\psi_{2}\) \(2\omega_{1}+2\psi_{1}+8\psi_{2}\) \(2\psi_{1}+8\psi_{2}\) \(-2\omega_{1}+2\psi_{1}+8\psi_{2}\) \(-4\omega_{1}+2\psi_{1}+8\psi_{2}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | \(8\omega_{1}\) \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) \(-8\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-8\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-8\psi_{2}}\oplus M_{-2\psi_{1}-8\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-8\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-8\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\psi_{1}-6\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-6\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-2\psi_{1}+6\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+6\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+8\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+8\psi_{2}}\oplus M_{2\psi_{1}+8\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+8\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+8\psi_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi_{1}-2\psi_{2}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{4\psi_{1}+2\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}-8\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}-8\psi_{2}}\oplus M_{-2\psi_{1}-8\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}-8\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}-8\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{2\psi_{1}-6\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}-6\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{2\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-2\psi_{1}+6\psi_{2}}\oplus M_{-2\omega_{1}-2\psi_{1}+6\psi_{2}} \oplus M_{-4\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}+2\psi_{1}+8\psi_{2}}\oplus M_{2\omega_{1}+2\psi_{1}+8\psi_{2}}\oplus M_{2\psi_{1}+8\psi_{2}}\oplus M_{-2\omega_{1}+2\psi_{1}+8\psi_{2}} \oplus M_{-4\omega_{1}+2\psi_{1}+8\psi_{2}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | \(\displaystyle M_{8\omega_{1}}\oplus M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}} \oplus M_{-8\omega_{1}}\) |
2\\ |